Skip to content

1 端到端训练一个深度学习模型

python
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR
# from torch.utils.tensorboard import SummaryWriter

# step4: 模型搭建
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 32, 3, 1)
        self.conv2 = nn.Conv2d(32, 64, 3, 1)
        self.dropout1 = nn.Dropout(0.25)
        self.dropout2 = nn.Dropout(0.5)
        self.fc1 = nn.Linear(9216, 128)
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = F.relu(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = F.max_pool2d(x, 2)
        x = self.dropout1(x)
        x = torch.flatten(x, 1)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.dropout2(x)
        x = self.fc2(x)
        output = F.log_softmax(x, dim=1)
        return output
    
class Net1(nn.Module):
    def __init__(self):
        super(Net1, self).__init__()
        self.conv1 = nn.Conv2d(1, 64, 5, 1, 2)
        self.bn1 = nn.BatchNorm2d(64)
        self.conv2 = nn.Conv2d(64, 128, 3, 1, 1)
        self.bn2 = nn.BatchNorm2d(128)
        self.conv3 = nn.Conv2d(128, 256, 3, 2, 1)
        self.bn3 = nn.BatchNorm2d(256)
        self.dropout1 = nn.Dropout(0.5)
        self.avg_pool = nn.AdaptiveAvgPool2d((1,1))
        self.fc1 = nn.Linear(256, 128)
        self.dropout2 = nn.Dropout(0.5)
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = F.relu(x)
        x = self.conv2(x)
        x = self.bn2(x)
        x = F.relu(x)
        x = self.conv3(x)
        x = self.bn3(x)
        x = F.relu(x)
        x = self.dropout1(x)
        x = self.avg_pool(x)
        x = torch.flatten(x, 1)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.dropout2(x)
        x = self.fc2(x)
        output = F.log_softmax(x, dim=1)
        return output


def train(args, model:nn.Module, device, train_loader, optimizer, epoch):
    # step1:设置成train 模式
    model.train()
    # step2 遍历 训练数据集
    for batch_idx, (data, target) in enumerate(train_loader):
        # step 3:input device设置
        data, target = data.to(device), target.to(device)
        # step 4: 梯度清0
        optimizer.zero_grad()
        # step 5:前向传播计算 output
        output = model(data)
        
        # step 6: 计算损失函数
        loss = F.nll_loss(output, target)
        # step 7:
        loss.backward()
        # step 8:权重更新
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))
            if args.dry_run:
                break
        # writer = SummaryWriter('mnist_log')
        # writer.add_scalar("trainning loss", loss, batch_idx)


def test(model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()  # sum up batch loss
            pred = output.argmax(dim=1, keepdim=True)  # get the index of the max log-probability
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(test_loader.dataset)

    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))

def main():
    # Training settings
    # step1: 命令行参数解析
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                        help='input batch size for training (default: 64)')
    parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
                        help='input batch size for testing (default: 1000)')
    parser.add_argument('--epochs', type=int, default=1, metavar='N',
                        help='number of epochs to train (default: 14)')
    parser.add_argument('--lr', type=float, default=1.0, metavar='LR',
                        help='learning rate (default: 1.0)')
    parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
                        help='Learning rate step gamma (default: 0.7)')
    parser.add_argument('--no-cuda', action='store_true', default=False,
                        help='disables CUDA training')
    parser.add_argument('--no-mps', action='store_true', default=False,
                        help='disables macOS GPU training')
    parser.add_argument('--dry-run', action='store_true', default=False,
                        help='quickly check a single pass')
    parser.add_argument('--seed', type=int, default=1, metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                        help='how many batches to wait before logging training status')
    parser.add_argument('--save-model', action='store_true', default=False,
                        help='For Saving the current Model')
    args = parser.parse_args()
    use_cuda = not args.no_cuda and torch.cuda.is_available()
    # use_mps = not args.no_mps and torch.backends.mps.is_available()

    torch.manual_seed(args.seed)

    # step 2: device 设置
    if use_cuda:
        device = torch.device("cuda")
    # elif use_mps:
    #     device = torch.device("mps")
    else:
        device = torch.device("cpu")

    train_kwargs = {'batch_size': args.batch_size}
    test_kwargs = {'batch_size': args.test_batch_size}
    if use_cuda:
        cuda_kwargs = {'num_workers': 1,
                       'pin_memory': True,
                       'shuffle': True}
        train_kwargs.update(cuda_kwargs)
        test_kwargs.update(cuda_kwargs)

    # step 3: 数据准备
    transform=transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,))
        ])
    dataset1 = datasets.MNIST('../data', train=True, download=True,
                       transform=transform)
    dataset2 = datasets.MNIST('../data', train=False,
                       transform=transform)
    train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs)
    test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)

    # step 4: 模型搭建
    model = Net1().to(device)
    
    # step 5: 优化器及学习率配置
    optimizer = optim.Adadelta(model.parameters(), lr=args.lr)
    # optimizer = optim.Adam(model.parameters(), lr=args.lr)
    # optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
    
    scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
    
    for epoch in range(1, 10):
        train(args, model, device, train_loader, optimizer, epoch)
        test(model, device, test_loader)
        scheduler.step()
        
    x = torch.rand(1, 1, 28, 28).to(device)
    torch.onnx.export(model, x, "minist.onnx")

    if args.save_model:
        torch.save(model, "mnist_cnn.pt")

if __name__ == '__main__':
    main()